The Explainability Paradox: Challenges for xAI in Digital Pathology
Abstract
The increasing prevalence of digitized workflows in diagnostic pathology opens the door to life-saving applications of artificial intelligence (AI). Explainability is identified as a critical component for the safety, approval and acceptance of AI systems for clinical use. Despite the cross-disciplinary challenge of building explainable AI (xAI), very few application- and user-centric studies in this domain have been carried out. We conducted the first mixed-methods study of user interaction with samples of state-of-the-art AI explainability techniques for digital pathology. This study reveals challenging dilemmas faced by developers of xAI solutions for medicine and proposes empirically-backed principles for their safer and more effective design.